
Dipole field solution of Maxwell's equations in the Schwarzschild metric

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1975 J. Phys. A: Math. Gen. 8 328

(http://iopscience.iop.org/0305-4470/8/3/006)

Download details:

IP Address: 171.66.16.88

The article was downloaded on 02/06/2010 at 05:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/8/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys. A:  Math. Gen., Vol. 8, No. 3, 1975. Printed in Great Britain. 0 1975 
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Poincare, 7523 1 Paris Cedex 05, France 
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Abstract. The dipole solution of Maxwell's equations in the Schwarzschild metric is found 
as  a convergent series for r > 2m. The validity of this representation by series is proved by 
a complete study of its convergence and differentiability. 

1. Introduction 

In the Newman and Penrose (1962) formalism, the electromagnetic field is characterized 
by three complex quantities (Do, (D, and (D2. When we consider the field of an electric 
dipole in the Schwarzschild metric, the angular dependence is 

@o = 4o(u, r)'dY?(& cp), m l  = 4Au, r ) Y W ,  cp) and Q2 = 42(u, r)ay?(& cp). 

Papapetrou (1975) has shown that A = rc$J2 satisfies the partial differential equation 

The solution of this equation completely determines the solution of Maxwell's 
equations : 

To solve equation (l), we seek a solution in the form : 

where the dipole moment p is a function of the retarded time. 
In the Minkowski metric, the function a would vanish and the expression (3) would 

be the solution of the equation (1) with m = 0 and without incoming radiation. 
The time-independent solution of the equation (1) corresponding to a static dipole 

can be expressed in closed form. This solution can be given for r > 2m by a convergent 
series (Papapetrou 1975). For a dipole moment p = 1, we have 

(4) 
a1 a 

a(r)  = m-+ . . . +m"++ . . , r3  
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where the relation between two consecutive coefficients is 

with a,  = $. 
In the general case, the function a can be given for r > 2m by a convergent series: 

a(u,r) = ma,(u,r)+ . . . +m"a,(u,r)+ . . . . (6) 
Papapetrou (1975) has determined the coefficients a, and a,. We shall give here an 

integral expression for a,. Moreover, we shall prove that the series (6) satisfies the 
convergence criteria which are necessary in order that (6) represents the solution of the 
equation (1). Our results for the dipole electromagnetic field are more complete than 
some similar results given by Bardeen and Press (1973) in a general case. 

We shall consider first the case in which p(u) is a step function S(u - uo). The solution 
which we shall determine for this case, will allow us to derive the solution for the case of 
an arbitrarily given p(u), because of the linearity of the equation (1). 

2. Sblution when the dipole moment is a step function 

2.1. Determination of the terms of the series 

After substituting the expression (6) into equation (l) ,  we have the system of the equations : 

Papapetrou's results (1975) suggest that 

If the functions a, are solutions of the equations (7) and (8), then the functions f, 
satisfy first of all the system of differential equations : 

Y(l+y)f;+(4+6y)f;+4fl = 2 (10) 

y ( l +  y)f :: + [(n + 3) + 2(n + 2)yl.f; + n(n + 3)fn = 2vn- '(L'), n B 2(11) 
where we set 

v,(y) = y2f;+2(n+2)yf;+(n+ l)(n+2)fn.  (12) 

f n ( 0 )  = 0 and fb(0) < cc. (13) 

Additionally the functions f, must satisfy 

The function f. can be obtained with the help of the function f,-' by determining 
the regular solution at the point y = 0 of the equation (11). The function f, has been 
given by Papapetrou (1975) : 
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For fn, we find 

+ 2 loy (1 + t)”- ’[ - 2t + (n - 3)] fn - ( t )  dt + 2y( 1 + y)” - lf, - l(y) , 1 
n 2 2. (15) 

The functions f, are indefinitely differentiable and their derivatives are regular at 
the point y = 0. In particular, we have 

fp(0) = 0 for1 6 p d n - 1 .  (16) 

The equation (1 1) possesses a property of particular interest. If we differentiate the 
expression (l l) ,  we have for f L an equation of the same form with ( n +  1) instead of 
n and f b -  instead off,-  

This property allows us to write expressions similar to (14) and (15) for the derivatives 
off , :  

1 
f‘P’(y) = -$( - l)Pp! 

(1 + y ) P +  

n + p - 1  f 

f P ’ ( Y )  = ( ( jo ~ “ + ~ + ~ f j p l  1 ( ~ )  dx) dt 
+ y)” + p 

+ 2 Ioy (1 + 1)”’ p -  ’[ - 2t + (n + p - 3)] fp?  1( t )  dt + 2y( 1 + Y ) ” + ~ ” -  lf(c’t n - 1  ( Y ) 

+f ?’(O)] n b 2. 

2.2. Properties of the terms of the series 

We introduce the notation 

We want to show that for all n, the quantity 11(1 +y)Pflff)(y)ll exists for p 2 1. 
This is true for n = 1 according to expression (17). Suppose the property is true for 
n - 1. The quantity (1 +y)p+lf!,p)(y) can be computed from the formula (18). lJnder 
the integral sign (1 + ~ ) p + ’ I f ; ? ~ ( y ) l  is bounded by ll(l + y ) p + l f ( p l  l(y)l/. Thus, we have 
the inequality : 

(l+Y)p+llfjlP’(Y)I 6 dx) dt 



Dipole field solution of Maxwell’s equations 

It follows that I I (  1 + y)P+ ‘fip)(y)Il exists for p 2 1. Consequently, we shall have 

When n 2 p +  1, integration in the expression (19) leads to the inequality: 

We thus find the basic property : 

It is possible to complete the study of the functionsf, and to show that thef,, and 
also the v,, are positive and monotonic. Moreover, it is easy to see that 

lim f,(y) = a,. 
Y - a  

Thus, the function f, is bounded by a,. Therefore by comparison with the convergent 
series (4), the series (6), whose terms are given by the formula (9), converges for r > 2m. 

We remark that for r fixed when U -, CO the field tends to a limit which is the static 
field of a dipole moment p = 1. 

However, we shall see that it is possible to prove that the series (6) represents the 
solutions of equation (1) by using only the basic property (22). In order to arrive at this 
proof we have to consider the solution of equations (1) for the case of a dipole moment 
which is a delta function. 

3. Solution when the dipole moment is a Dirac delta function 

It is clear that the solution corresponding to the dipole moment 6(u - uo)  can be obtained 
by differentiating with respect to -uo  the solution determined in $ 2  for the dipole 
moment S(u - uo). The final expression is then found to be 

Using the basic properties (20) and (22), we see now at once that the series H, and 
all its formal partial derivatives with respect to U and r, are absolutely and uniformly 
convergent in any domain r 2 r l  > 2m with any r I  . 

Thus, all partial derivatives of the function H can be obtained by differentiation 
term by term. Moreover we can change the order of the terms. This allows us to verify 
that the function G given by (23) is the required function a. 
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4. Solution for any dipole moment 

Remembering that 
+ I x  

~ ( 4  = J- p(uo)&u - 110) duo 
z 

we see that for any dipole moment p(u),  the function a will be given by the formal ex- 
pression : 

+ I  

p(uo)G(u - u 0 ,  r )  duo 

valid for r > 2m. 
Let us assume that for all U the function Ip(u’)l is bounded by a constant K ,  if U‘ < U. 
The basic formulae (20) and (22) show that the function H and its derivatives are 

This result and the assumption on p(u) show that the function a given by (24) exists 
in a neighbourhood of any point ( u 2 ,  r 2 )  bounded by an integrable function. 

and is continuous; moreover we have the formulae : 

We can again differentiate the expressions (25) and (26) with respect to r. These 
differentiations under the integral sign show that a given by (24) is the required function 
a, since G is the function a for a dipole moment &U- uo).  

It is easy to see that if the dipole moment p is a Ck function k 2 0, with Ip(u)l bounded 
in the limit U -, - x, then the function a given by the formula (24) is a Cki’ function. 

We remark that we can change the order of integration and summation in the 
formula (24). Consequently, we have 

Again from the basic properties (20) and (22), the series (27) and all its partial deriva- 
tives with respect to u and r, are absolutely and uniformly convergent in any domain 
r 2 r l  > 2m with any r l .  

5. Conclusion 

We have determined the component 42 of the field of an electric dipole in the Schwarz- 
schild metric. The two other components are then calculated from ( 2 )  : 

r > 2m (28) 
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